Cross-species Amplification and Characterization of Shorea Microsatellites in Shorea contorta Vidal (Dipterocarpaceae)

Randy Villarin, Kathleen Prinz, Teofanes Patindol, Reiner Finkeldey


The tropical rainforests in Southeast Asia consist of diverse Dipterocarpaceae species. In the Philippines, Shorea contorta is one of the most economically and ecologically important dipterocarps. Presently, its long-term survival is critically endangered and the remaining genetic resources are assumed to be under pressure. In this study, we cross-amplify 23 Shorea microsatellites in S. contorta. The polymorphic loci were selected and characterized using planted and natural populations of the studied species. Results revealed a high success rate for cross-species amplication (78.26%). The ten (10) polymorphic microsatellites showed a mean number (Na) and eective number (Ne) of alleles of 6.00 and 2.75, respectively. The mean values for observed (Ho) and expected (He) heterozygosities were 0.45 and 0.47, respectively. In general, these microsatellites are useful for population genetic studies in S. contorta.


Transferability; Cross-amplification; Dipterocarps; Simple Sequence Repeats; Tropical Forest;


Abasolo, M. A., Fernando, E. S., Borromeo,

T. H., and Hautea, D. M. 2009. Cross-species amplification of Shorea microsatellite DNA Markers in Parashorea malaanonan (Dipterocarpaceae).

Philippine Journal of Science 138:23-28

Akkak, A., Scariot, V., Marinoni, D. T., Boccacci, P., Beltrano, C., and Botta, R. 2009. Development and evaluation of microsatellite markers in Phoenix

dactylifera L and their transferability to other Phoenix species. Biologia Plantarum 53:164-166

Ashton, P. S. 1982. Flora Malesiana. Ser 1

Spermatophyte 9:237-552

Chabane, K., Ablett, G. A., Cordeiro G. M., Valkoun, J., and Henry, R.J. 2005. EST versus genomic derived microsatellite markers for genotyping wild and

cultivated barley. Genetic Resources and Crop Evolution 52:903-909. DOI: 10.1007/s10722-003-6112-7

Chen, G. Q., Huang, H. W., Kang, M., and

Ge, X. J. 2007. Development and characterization of microsatellite markers for an endangered shrub,

Ammopiptanthus mongolicus (Leguminosae) and cross-species amplification in Ammopiptanthus nanus.

Conservation Genetics 8:1495-1497

Cooper, G., Rubinsztein, D. C., and Amos, W. 1998. Ascertainment bias cannot entirely account for human microsatellites being longer than chimpanzee homologues. Human Molecular Genetics 7:1425-1429

Crawford, A. M., Kappes, S. M., Paterson, K. A., deGotari, M. J., Dodds, K. G., Freking, B. A., Stone, R. T., and Beattie, C. W. 1998. Microsatellite evolution:

testing ascertainment bias hypothesis. J Mol Evol 46:256-260

Dayanandan, S., Bawa, K. S., and Kesseli, R. 1997. Conservation of microsatellites among tropical trees (Leguminosae). American Journal of Botany


Ellegren, H., Primmer, C.R., and Sheldon, B. C. 1995. Microsatellite evolution: directionality or bias? Nat Genet 11:360-362

Excoer, L., Laval, G., and Schneider, S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1:47-50

Frankham, R., Ballou, J. D., and Briscoe, D. A. 2002. Introduction to conservation genetics. Cambridge University Press, Cambridge

Gaitan-Solis, E., Duque, M. C., Edwards, K. J., and Tohme, J. 2002. Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-amplification in Phaseolus spp. Crop Science 42:2128-2136

Gao, L. Z., Zhang, C. H., and Jia, J. Z. 2005. Cross-species transferability of rice microsatellites in its wild relatives and the potential for conservation genetic studies. Genetic Resources and Crop Evolution


Gonzalez-Martinez, S. C., Robledo-Arnuncio, J. J., Collada, C., Diaz, A., Williams, C. G., Alia, R., and Cervera, M. T. 2004. Cross-amplification and sequence variation of micro satellite loci in Eurasian hard pines. Theoretical and Applied Genetics


Harr, B., Zangerl, B., Brem, G., and Schlotterer, C. 1998. Conservation of locus-specific microsatellite variability across species: a comparison of two

Drosophila sibling species, D. melanogaster and D. simulans. Molecular Biology and Evolution 15:176-184

Hartl, D. L., and Clark, A. G. 1997. Principles of Population Genetics. 3rd edn. Sinauer, Sunderland, MA Hempel, K., and Peakall, R. 2003. Cross-species amplification from crop soybean Glycine max provides informative microsatellite markers for the study of

inbreeding wild relatives. Genome 46:382-393

Hutter, C. M., Schug, M. D., and Aquadro, C. F. 1998. Microsatellite variation in Drosophila melanogaster and Drosophila simulans: a reciprocal test of the

ascertainment bias hypothesis. Molecular

Biology and Evolution 15:1620-1636

Isagi, Y., and Suhandono, S. 1997. PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blume and their conservation between oak species.

Molecular Ecology 6:897-899

IUCN. 2011. IUCN Red List Categories. IUCN, Cambridge, United Kingdom.

Iwata, H., Konuma, A., and Tsumura, Y. 2000. Development of microsatellite markers in the tropical tree Neobalanocarpus heimii (Dipterocarpaceae). Molecular Ecology 9:1661-1686

Kijas, J. M. H., Fowler, J. C. S., and Thomas, M. R. 1995. An evaluation of sequence tagged microsatellite site markers for the genetic analysis within Citrus and related species. Genome 38:349-355

Full Text: JST_2016 06


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.